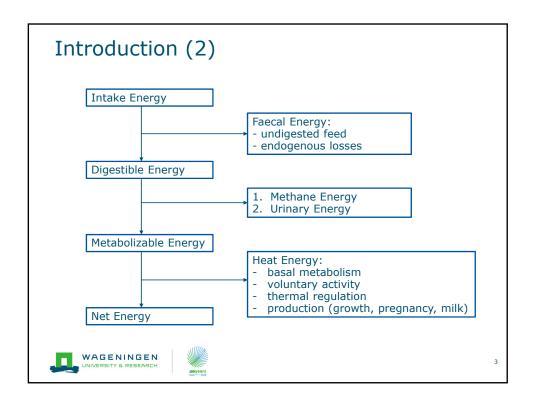
Net energy requirements of Holstein Friesian dairy cattle

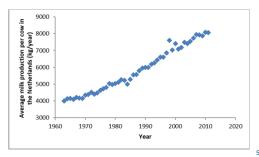
Energy requirements for maintenance and milk production 12-12-2019, Wouter Spek



Introduction (1)

- An energy evaluation system includes
 - Energy requirements
 - Maintenance, Pregnancy, Growth, Milk production
 - Energy values of feedstuffs
- Accurate energy evaluation system important for:
 - Improving feed efficiency / reducing nutrient losses
 - Valorization/ranking of feedstuffs
- Net energy (VEM) system (Van Es 1975, 1975)
 - Improvement over the TDN and starch equivalent system

Introduction (3)


- Van Es (1975)
 - NE requirement maintenance (NE_m: 293 KJ/kg BW^{0.75})
 - Efficiency conversion ME \rightarrow NE milk (k_L: 0.60)
 - ME requirement maintenance (ME_m: **488** KJ/kg BW^{0.75})
 - $ME_m = NE_m / k_L = 293 / 0.6 = 488 \text{ KJ/kg BW}^{0.75}$
- Dong et al. (2015) (1992 2010; n = 823; UK)
 - $ME_m = 688 \text{ KJ/kg BW}^{0.75}$; $k_L = 0.644$
- Moraes et al. (2015) (n = 1038; USA)
 - 1963 1973; $ME_m = 510 \text{ KJ/kg BW}^{0.75}$; $k_L = 0.60$
 - 1974 1983; $ME_m = 590 \text{ KJ/kg BW}^{0.75}$; $k_L = 0.63$
 - 1984 1995; $ME_m = 740 \text{ KJ/kg BW}^{0.75}$; $k_L = 0.70$

Introduction (4)

- Increased ME_m since 1975:
 - Doubled milk production per cow
 - Changed body composition
 - Higher (digestive) organ mass per kg BW^{0.75}
 - Increased blood flow

Introduction (5)

Project to update the VEM system

- PPS project (ZuivelNL, Overheid, WLR, WU, CVB)
 - Experiment in the CRC (2018)
 - Determination of energy requirements of dry and lactating non-pregnant HF cows
 - Meta-analysis with recent CRC experiments carried out in Wageningen (period 2004 – 2019) for estimating:
 - Net energy requirements
 - Net energy values of feedstuffs
 - Validation of results using production data

CRC experiment (M&M) (1)

- 24 HF non pregnant cows
 - 12 high producing (45 kg milk; 81 DIM)
 - 12 low producing (29 kg milk; 231 DIM)
 - First round in CRC low milk production (9 kg milk)
 - Second round in CRC as dry cows
- High versus low starch TMR diets
- 17-21 adaptation days
- 4 measurement days in CRC

-

CRC experiment (M&M) (2)

	HP-Fibre	HP-Starch	LP-Fibre	LP-Starch			
Ingredients (g/kg DM)							
Grass silage	351	234	689	377			
Maize silage	135	311	114	389			
Wheat straw	0	0	100	121			
Concentrate mixture	514	455	97	113			
Analysed contents (g/kg DM u	nless otherwi	ise mentioned					
DM	414	409	423	407			
Ash	68	61	85	66			
OM	932	939	915	934			
CP	173	173	147	137			
Fat	34	30	31	28			
Starch	138	227	64	170			
Suiker	64	56	80	51			
NDF	415	349	503	450			
Crude fibre	233	195	273	246			
Gross energy (MJ/kg DM)	18.9	18.8	19.0	18.9			
Titanium	1.42	1.38	1.32	1.28			
Calculated contents (g/kg DM) unless otherwise mentioned							
DC-OM (%)	82.4	82.2	74.9	74.2			
VEM (/kg DM)	1044	1052	899	915			
DVE-07	101	102	65	62			
OEB-07	17	17	22	17			

CRC experiment (M&M) (3)

- CRC measurements
 - DMI (intake minus residues)
 - Milk production (kg/d)
 - Milk contents (GE, fat, protein, lactose, urea)
 - Faecal digestibility (starch, protein, NDF, fat, OM)
 - Energy excretion (in milk, manure, faeces, methane)
 - Consumption of O₂
 - Production of CO₂
 - N balance (N-intake, N-excretion in faeces and manure, N-milk, NH₃)
 - BW

9

CRC experiment (M&M) (4)

Model:

If negative energy balance:

• NE_L (KJ/d/kg $BW^{0.75}$) = $B_0 + B_1 \times ME + B_3 \times Mob$

If positive energy balance:

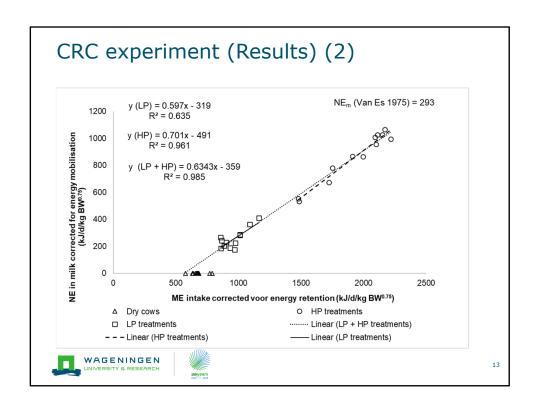
• NE_1 (KJ/d/kg $LG^{0.75}$) = B_0 + B_1 × (ME - (Ret / B_2))

Where:

- NE_1 = energieoutput in melk (KJ/d/kg LG^{0.75})
- ME = ME intake (KJ/d/kg $LG^{0.75}$)
- Ret = energy retention (KJ/d/kg BW^{0.75})
- Mob = energy mobilisation (KJ/d/kg BW^{0.75})

CRC experiment (Results) (2)

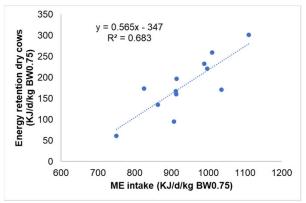
- B₀ = intercept value and equal to the estimated NE for maintenance
- B_1 = the efficiency of conversion of ME into NE_L .
- B₂ = the efficiency of conversion of ME into body reserves (predominantly fat)
- B₃ = the efficiency of conversion of body reserves (predominantly fat) into NE_L
- $B_2 = 0.70$ (Moraes et al., 2015)
- $B_3 = 0.89$ (Moraes et al., 2015)


11

CRC experiment (Results) (1)

	HP-Fibre	HP-Starch	LP-Fibre lactating	LP-Starch lactating	LP-Fibre dry	LP-Starch dry
Milk (kg/d)	37.2	38.1	9.9	9.7		
DMI (kg/d)	21.4	22.8	11.1	10.4	10.9	10.9
Faecal diges	tibility (%)					
ОМ	70.8	70.7	73.6	74.2	72.9	74.1
Ash	56.3	52.9	60.5	51.6	58.8	54.4
CP	65.0	67.6	68.4	69.1	67.5	70.9
Fat	67.5	68.6	57.0	63.1	53.5	66.6
NDF	65.1	58.4	74.7	69.4	73.9	68.1
CF	63.7	57.3	76.0	72.0	75.5	71.1
Starch	95.2	94.9	95.5	97.9	95.0	97.5
GE	68.4	68.6	70.4	71.2	69.4	71.4
DC-OM predicted based on wethers fed at maintenance level (%)						
	82.4	82.2	74.9	74.2	74.9	74.2

CRC experiment (Results) (3)

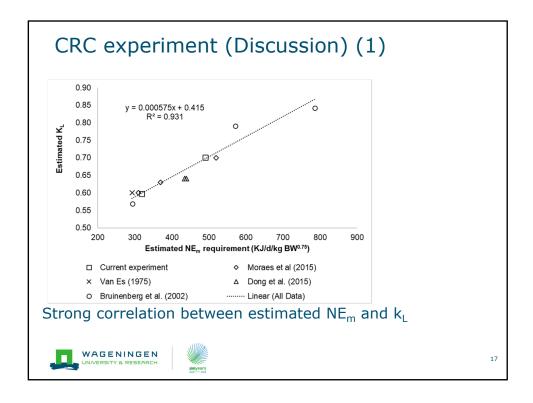

	k _L	ME _m (KJ/kg BW ^{0.75})	NE _m (KJ/kg BW ^{0.75})	VEM*	Difference in VEM req. Relative to van Es (1975)
Van Es (1975)	0.600	488	293	5464	0.0%
LP	0.597	534	319	5981	9.5%
HP	0.701	700	491	7841	43.5%
LP+HP	0.634	566	359	6339	16.0%
Dry cows	0.634	676	429	7575	38.6%

^{*}VEM requirement per day for a 650 kg BW cow

CRC experiment (Results) (4)

Conversion of ME into body reserves is 0.57 instead of 0.70 $\rm ME_m = 347/0.565 = 614~KJ/d/kg~BW^{0.75}$

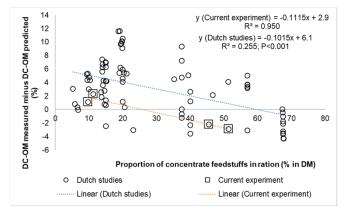
15


CRC experiment (Results) (5)

	k _L	ME _m (KJ/kg BW ^{0.75})	NE _m (KJ/kg BW ^{0.75})	VEM*	Difference in VEM req. Relative to van Es (1975)
Van Es (1975)	0.600	488	293	5464	0.0%
LP	0.597	534	319	5981	9.5%
HP	0.701	700	491	7841	43.5%
LP+HP	0.634	566	359	6339	16.0%
Dry cows	0.634	676	429	7575	38.6%
Dry cows	0.565	614	347	6875	25.8%

^{*}VEM requirement per day for a 650 kg BW cow

CRC experiment (Discussion) (2)


Partial efficiencies

- Conversion efficiency of ME into body reserves
 - 0.70 for lactating cattle (Moraes et al., 2015)
 - 0.565 for dry cows (this experiment)
 - 0.747 for lactating cattle (Moe et al., 1981)
 - 0.644 for dry cows (Moe et al., 1982)
- Conversion efficiency of ME into body protein and body fat
 - 0.20 for body protein and 0.75 for body fat in beef cattle (Williams and Jenkins 2003)
- Source of dietary ME (conversion efficiency dietary ME in body energy of growing pigs (Van Milgen et al., 2001):
 - Fat, 88.3%; Starch 84.2%; Protein 52.0%

CRC experiment (Discussion) (3)

- 1. Van Es (1975): 3% decrease in DC-OM per unit increase in feed level
- Decrease in DC-OM also affected by concentrate %

19

CRC experiment (Conclusions)

- ME_m requirements of modern HF lactating dairy cattle (566 KJ/d/kg BW^{0.75}) are 16% higher then estimated by Van Es (1975)
- \blacksquare ME $_{\rm m}$ requirements of modern HF dry cows (614 KJ/d/kg BW $^{0.75}$) are 26% higher then estimated by Van Es (1975)
- Results from this experiment are in line with the finding of Moe et al. (1981) that conversion of dietary ME in body reserves is less efficient in non lactating cattle compared to lactating dairy cattle

Further steps

- Meta-analysis of large dataset of recent CRC studies (including the present study) for establishing energy requirements for lactating dairy cattle
- Updating the formula for predicting GE and ME in feedstuffs from:
 - GE (KJ/kg DM) = 24.14 * CP + 36.57 * FAT + 20.92 * CF + 16.99 * NFE
 - ME (KJ/kg DM) = 15.90 * DCP + 37.66 * DFAT + 13.81 * DCF + 14.64 * DNFE

To:

- GE (KJ/kg DM) = xx.xx * CP + xx.xx * FAT + xx.xx * NDF + xx.xx * sugar + xx.xx * Starch + xx.xx * RNSP
- ME (KJ/kg DM) = xx.xx * DCP + xx.xx * DFAT + xx.xx * DNDF + xx.xx * sugar
 + xx.xx * DStarch + xx.xx * DRNSP

Thanks for listening!

Questions?

23

CRC experiment (Conclusions)

- ME_m requirements of modern HF lactating dairy cattle (566 KJ/d/kg BW^{0.75}) are 16% higher then estimated by Van Es (1975)
- ullet ME $_{
 m m}$ requirements of modern HF dry cows (614 KJ/d/kg BW $^{0.75}$) are 26% higher then estimated by Van Es (1975)
- Results from this experiment confirm the findings of Moe et al. (1981) that conversion of dietary ME in body reserves is less efficient in dry cows compared to lactating dairy cattle
- Estimated k_L and NE_m values are highly correlated and should therefore be estimated simultaneously on the same dataset

